In this blog post, I want to summarize the new releases from the Google tools, that we use daily in datadice. Therefore I want to give an overview of the new features of BigQuery, Looker Studio, Google Analytics and Google Tag Manager. Furthermore, I will focus on the releases that I consider to be the most important ones and I will also name some other changes that were made.
If you want to take a closer look, here you can find the Release Notes from BigQuery, Looker Studio, Google Analytics & Google Tag Manager.
When you execute a query and look a the output table, you will see that you can change the sorting of this table. You can order by any column descending and ascending. Usually, you do not have to pay for this operation, but if the table gets bigger, BigQuery shows the info, on how much the sort operation will cost.
This one is a nice idea from Google. It is a new recommender that gives you hints for Partitioning and Clustering of your already created tables. At the top right corner of your BigQuery project, you should see a bulb and a number, which shows the number of recommendations.
I looked into the recommendations for some of our more complex projects and the recommendations could be greatly improved. E.g. For projects I know we can do a lot of improvements for partitioning of the tables, but I get just one clustering recommendation for one table.
Then in the details, you see the table name, the type of recommended option, and the target column.
In the end a nice idea, still no good suggestions, but I think it will get better over time.
A quick one. You can add a description to view columns now. It is possible in the CREATE VIEW or ALTER COLUMN statement or in the UI itself.
I will take these two new features because they are quite closely connected and it is the most important update this month.
With these configurations, you can set up a full schedule of automatic query executions in your project.
First, you have to create a Release Configuration.
You just have to choose the name of the release and which Git branch (“commitish”) you want to use for the release. The idea behind the release configuration is to differentiate between the environments e.g. staging and production. Further information you can find here.
In the next step, you can use a Workflow Configuration. There you can do the following configurations.
Further information you can find here.
With this new feature, Dataform is able to build a self-sufficient data pipeline ecosystem with a lot of features. In the past, we used Airflow to build up these data pipelines. For all the new projects, we already used Dataform, but still in combination with Airflow, due to the lack of scheduling possibilities.
Now it is possible to get rid of Airflow and just use Dataform to transform and update your data regularly with Version Control, Dependency checks, DAGs, automatic checks and many more.
In the next days we will publish a more detailed blog post with guides how to setup workflow configurations and release configurations.
There is a new running calculation available. It calculates the running percentage delta of a metric, based on the sorting you set.
In the example, the revenue change from the product category Hoodie to T-Shirt is 41,78% and you can see it in the T-Shirt row.
The underlying calculation is (current value - previous value) / ABS(previous value)
This a feature that is good to have during the development and creation process of the dashboard. You can add once all the desired data to your dashboard and then pause the report updates. There will be no data requests until you resume the updating process and you can create the dashboard and save costs easily.
There was always a lack of funnel analysis in GA4 to see your user's journey. Google catches up, by giving you the possibility, to build custom funnel reports and there is a default report available.
In the exploration menu is the “Funnel Exploration” available. You can configure the steps and the dimensions and metrics you want to show. The custom report looks similar like the new default “User purchase journey” report, just with different dimensions and metrics.
The “User purchase journey” can be found under Monetisation > User purchase journey. There you get some insights into your purchase funnel and at which checkout step the users drop off. The look and feel of the report is like the same report from Universal Analytics.
For sure you have to track this information on your website and send the data in the correct structure to your GA4 property.
The audience builder in GA4 got some new features and you can build up your audiences more granularly.
A lot of new dimensions you can use to filter your users, e.g.:
Next to the new dimensions, there are also new functions and operators available to build audiences
No further release for the Google Tag Manager.
This post is part of the Google Data Analytics series from datadice and explains to you every month the newest features in BigQuery, Data Studio, Google Analytics and Google Tag Manager.
Follow us on LinkedIn for insights into our daily work and important updates on BigQuery, Data Studio, and marketing analytics.
Subscribe to our YouTube channel for discussions on DWH, BigQuery, Looker Studio, and Google Tag Manager.
If you are interested in learning BigQuery from scratch, get access to our free BigQuery Course
Elevate your skills with Google Data Studio and BigQuery by enrolling in our Udemy course.
Need help setting up a modern, cost-efficient data warehouse or analytical dashboard? Email us at hello@datadice.io to schedule a call.